
Neutralizing
Keyloggers, an intimate
story between the
keyboard and the system

DAVID Baptiste, PhD

How to protect against keyloggers?

→How does the keyboard system work in Windows?

→ How do keyloggers work?

→ How do the existing anti-keylogger solutions work?

→ How can we do better?

We are talking about protecting the integrity

of the data handled within a system.

How does the keyboard work?

→ At the begining there is a physical device connected to the computer.

Different codes used by different keyboards

→The values present in a scan-code set are hardware manufacturer defined.
→Historically speaking, there are three main scan-code sets.

→ Scan code set 1: used by IBM PC XT ~ 1983.
→ Scan code set 2: used by IBM PC AT ~ 1984.
→ Scan code set 3: used by IBM PC 3270 ~ 1987.

→A different scan-code set could be used by a keyboard manufacturer.
→ But it would be its responsibility to translate it into a supported
scan-code by the computer's operating system.

→ In practice, the scan-code set 1 is used the most by device manufacturers.
→ Still supported by operating systems due to backward compatibility.

Many technologies to interface with the keyboard

→ PS/2 raised in 1987.
→ Extended with ATX in 1995.
→ One for mouse and one for keyboard.

Many technologies to interface with the keyboard

→ Wireless connection with the machine.
→ Use Bluetooth protocol.
→ Quite similar to the USB protocol.

→ Use Universal Bus Serial protocol.
→ Each device has an “address” on the bus.
→ Use “Interrupt Data Transfers”.

→ HID stands for “Human Interface Device” class.
→ It references all devices interfacing with humans.
→ Device self-describing and manufacturer-defined interface

to allow generic software applications.

One per device, it provides USB
version number, the type of
device (class, subclass), vendor
id and product id.

- There are many configuration
descriptors per device descriptor.

- Usually one, but could be as
many as cases of power
management (self or
bus powered).

- Each configuration descriptor has many
interface descriptors (one per function in the
device).
- For instance, a USB phone would include a
vocal stream and a digital keyboard.

- Each function is
referenced by an
interface class or
subclass value.

- Each function can use
more than one endpoint.

- Endpoint descriptors
define how to communicate
with a function.

- It provides bandwidth requirements, the
direction (IN/OUT), transfer type and maximum
packet size.

This point is relevant since it translate
from USB to device drier (i.e.: keyboard).

USB/HID – Protocol description:

From USB to HID:

→The HID interface corresponds to Human Interface Device.

→HID is a special class defined through USB interface descriptor which allows a device to
interface with humans easily.

→HID is defined in USB interface descriptors to define usage(s) (functions) of a device.
- Device self-describing interface to allow generic software applications.
- One driver on the host to handle HID data whatever the HID device is.

→ In practice, HID is can use collections to group Input, Output, and Feature items.
- Group many small different items to perform a single function in a bigger item.
- For instance: A mouse device with a collection of four information (x, y, button 1, button 2).

→ Selection of the interface HID from a configuration and Get/Set Reports is performed as standard USB
commands.

- HID requests are technically standard USB SETUP commands on the Default Control Pipe
(endpoint 0).

USB/HID – Protocol description:

HID - Windows' kernel architecture

→All requests from devices that interface with HID are redirected to the HIDClass.sys driver.
- The request can come from Bluetooth, USB, … devices.
- It is possible to register a HID driver to filter HID reports.
- Windows API allows to write HID Client driver (third party drivers) in a simplified way

→ In practice, the freedom of HID devices with report descriptors is not as wide as thought.
- Windows must be able to adapt itself to this freedom.
- HID driver should be reserved for specific circumstances.

- Already a lot of supported HID Clients...

→ It is possible to restrict access to a HID devices only to “system” privileged processes.

Bluetooth USB Other

Any driverKbdhid.sys

Keyboard management

→The system manages at least 4 types of scan-code sets:
- 3 from PS/2 technology.
- 1 from USB/HID technology (defined for keyboards at boot time).

→ Microsoft translates the codes coming from the HID keyboards into scan code set 1.
- The translation is from USB/HID to PS/2 (from the present to the past!).
- In fact, it is an extended “scan code set” inspired from scan code set 1.
- For backward compatibility purposes with the PS/2.
- The operation is performed in kbdhid.sys driver with routine
HidP_TranslateUsageAndPagesToI8042ScanCodes

- In KbdHid_ReadComplete routine when a key is read.
- In KbdHid_AutoRepeat routine when the key pressed is repeated.

→ For the sake of simplicity, it is a system of callback arrays that perform the translation with tables of
corresponding values (as a chart).

Keyboard management

→To get access to the keystroke, HID driver must read from the device keyboard.

→The reading operation is engaged by the driver which waits until a key is pressed.
- The reading order goes down to the device (such order is called an IRP read).
- It means the reading order comes from an “upper” driver.
- In the case of HID keyboards, this driver is “kbdhid.sys” driver.

→Access to the key code is only possible once the reading operation has been completed.
- The reading order is sent back to the driver.

→ A read IRP is always pending in the system to always read keystrokes.
- Due to KbdHid_InitiateStartRead routine which (re)-engages the reading IRP
once a read operation has succeeded.
- KbdHid_ReadComplete routine is called once all underlying drivers in the device stack
have finished to process the IRP.

- This routine gets access to the keystroke scan code!

HIDClass.sys HidParse.sys

Kbdhid.sys

HIDTransport

IRP_READ

Hardware

This is where the scan-
code belongs.

Keyboard management

→HID keyboard driver is not a generic driver.
- It is generic only for HID keyboard devices.
- There is an “upper” device driver able to manage every type of keyboard.
- In practice, it mostly interfaces USB/HID & PS/2 keyboard devices.
- This driver is called kbclass.sys driver.

→ kbdhid.sys uses a callback exported by kbclass.sys called KeyboardClassServiceCallback.
→ i8042prt.sys driver (PS/2 keyboards) uses the same callback routine.

- It shows that both methods converge toward the same result.

→This also explains why the HID technology, although more modern (but appeared after) than PS/2, is translated into
scan code set 1 from PS/2 world.
→The callback routine KeyboardClassServiceCallback is provided through IOCTL_INTERNAL_KEYBOARD_CONNECT.

- This notification is sent to all drivers referenced in the keyboard device drivers' stack.
- This registration is part of the Windows registry’s configuration of the driver.

Report

Re-engage

Callback

Kbdclass and Windows subsystem

→ Transition from kernel to user mode architecture:
- The goal is to transfer keyboard information from kbdclass.sys to user-mode applications.

→Done via the Raw Input Thread (RIT) with a message system used by GUI processes.
- The System of messages used for GUI windows is asynchronous nowadays.
- The RIT is a kernel-mode thread hosted by csrss.exe.

RIT is a centralized system that manages keystrokes to distribute them through messages in an asynchronous
way.

→ RIT initializes the read IRP processed by kbdclass.sys driver.

… …

Keyboard management

→ Few details about the Raw Input Thread:
- The RIT is managing initialization and hot-keys (keyboard shortcuts) registration.
- The RIT is able to adapt to tablets that often have extra buttons.
- The RIT manages applications that hang on the screen.
- The RIT avoids reading from the keyboard device if this one is in sleep mode.
- The RIT is involved in the clipboard management procedure.

→One RIT is initialized per session (from session 0 or other ones).
- There are different desktops (in a Windows Station) in a given user’s session.
- RIT is able to manage desktop switching in a session.

- For instance, User Account Control interface purposes with CTRL+ALT+DEL.
- This keystroke combination is held by Winlogon only at boot time for its
exclusive use.

- Desktops provide a security whenever switching by:
- Message system isolation & reset keyboard state.

Keyboard management

→ RIT manages differently three types of devices (called sensors): mouse, keyboard and HID devices.
- Read procedure is technically engaged by RIMStartDeviceRead.
- This routine calls ZwReadFile with an APC routine rimInputApc to read from the sensor.
- The call to ZwReadFile is enough to engage a read IRP to lower drivers.
- Detail: rimInputApc tries to read from the device five times before giving up.

→ Routine rimInputApc is supposed to handle the keystroke content.
- It reengages the read procedure through rimProcessDeviceBufferAndStartRead.
- Thus, after each reading, the reading operation is always reengaged.

→The completion procedure rimCompleteReads is notified once the read has been performed.
- i.e. once keystroke content from keyboard device has been read.
- Routines rimProcessHidInput and rimProcessKeyboardInput transfers buffers from
kernel-mode to user-mode in csrss.exe’s memory.

Management of keystroke content

→When a key is received, it is received as a scan-code which is manufacturer defined.
- To ease application development, Windows uses a universal key representation code.
- This code is called virtual key code (VKC).
- Conversion from scan-code to VKC is done in CKeyboardSensor::ProcessInput routine.

→The conversion is a two-steps procedure acting as a post-processing on the data from devices.
- 1) It normalizes the scan code received (with MapScancode).
- 2) The scan-code is converted into a virtual key code (with VKFromVSC and
InternalMapVirtualKeyEx routines).

→ If one of the operations fails, it means that the key is invalid.
- In such a case, the keystroke is dropped and ignored by the system.

→ Virtual key code is a standardized set of values to represent each key with a virtual value.
- This code is used to avoid applications to deal with all layouts of keyboard devices.
- Virtual-key codes are device-independent.

→Windows offers capabilities to translate from keyboard scan code to virtual key code.
- This translation depends on the keyboard layout (English, French, German, Japanese...).
- In Windows’ documentation, input local identifier is the new name for keyboard layout.
- Most of translation operations can be performed with MapVirtualKeyEx function.
- Takes into account key modifiers (NUM LOCK, LOCK SHIFT…).

→A keyboard layout is a kernel Dll manages specificities of a given keyboard layout device (partially
documented).

- Called in kernel-mode context part of the raw input thread procedure.

→ Each process inherits the keyboard layout from the current user’s desktop.

Management of keystroke content

Management of keystroke content

→How is the translation from scan code to virtual key code and character done?
- The translation can be done in either direction.
- At application level, there are three (“four”) main functions:

- MapVirtualKey(Ex), VkKeyScan(Ex), and ToUnicode(Ex)/ ToAsciiEx.
- In practice, most of the work is performed in InternalMapVirtualKeyEx routine.

→Conversion from virtual key code to character can produce both ASCII (ToAsciiEx) or Unicode
(ToUnicodeEx) characters.

→ In practice, the translation is automatically performed by the RIT in the input messages delivered to
any application.

How do we access keyboard from application?

→There are two main interfaces to access keyboard content.
- The synchronous message system provided by the Raw Input Thread.
- The asynchronous system by other means.

→While the message system is the backbone of keystroke transmission but there are other ways.
- In practice, these are alternative ways of accessing various resources maintained by the RIT.
- This does not question the central position of the raw input thread.

→More directly, all these methods are used by legitimate applications and … malicious ones.
- Keyloggers are just applications that make malicious use of the input keyboard data.
- But they use the same means of action as legitimate applications (they have no choice).

Broadcast of keystrokes by the system
with Window Messages

→ Let us practice a simple experiment:
- If we press any key, only the application displayed in the foreground of the screen
receives the input content.
- Applications in the background receive nothing→There is a “distribution privilege”.

→A foreground thread is the default thread created by the system when a GUI window is created.
- It owns the window and its associated message queue.
- It deals with messages while its associated window is foreground on the screen.

→A window that is in the foreground and active for the user is said to have focus property.

For short:
→ Foreground thread belongs to a single thread at time (and is a kernel-mode property).
→ Focus belongs to a single GUI window (and is a user-mode property).

→ Rules:

The system posts keyboard messages to the message queue of the foreground thread that
created the window with the focus.

→The current window that has the focus receives all keyboard messages.
- Until the focus changes to a different window.
- Messages are received from the message queue of the foreground thread.
- This is a temporary property, because the focus can be gained or lost.

- Depending on user’s interactions.

Broadcast of keystrokes by the system
with Window Messages How to make a windows “active”?

How to become a foreground thread?

How to interface with messages?

→Technically speaking, a message is a value, but some messages may have data associated.
- This is the case with keyboard input messages.

→There is a system of registration of callbacks functions used to interface with different messages.
- Messages are represented as constant values starting by WM_Xxx.
- For instance, WM_KEYDOWN and WM_SYSKEYDOWN to interface keyboard’s messages.
- Message WM_INPUT is used to directly interact with the keyboard as HID content.

Other means to access keyboard

→ Internally within RIT, there are different structures that represent the state of the keyboard keys.
- The state can be pressed or released (or held).
- Used to know whenever a key is pressed if another one is also pressed:

- Shift for uppercase management or multiple keys combinations within shortcuts.

→Access can be synchronized with the reception of a message or completely asynchronous.
- For synchronous access, it is necessary to have focus from the keyboard.
- For asynchronous access, there is no need of focus (the freedom is much greater).

→ In the case of a synchronous access, the keyboard status changes as a thread retrieves keyboard messages from its
message queue.

- Rarely used, GetKeyboardState function to get the full representation of a keyboard
when a message is received.
- GetKeyState function is used to know if another targeted key has been pressed when a
message is received.

Other means to access keyboard

→ In the case of an asynchronous access, it is possible to listen to the whole keyboard stealthily.
- It does not depend on current thread’s message queue.
- Neither subject to keyboard focus nor concerned by foreground thread property.

→This is the preferred approach used by most malware (with GetAsyncKeyState function).
- Test only one virtual key code at time.
- Simple to use (testing each VK code in a loop from 0 to 255) for efficient results.

→ But not free from drawbacks:
- It could miss some keystrokes in the loop enumeration (balance between CPU
consumption and efficiency).
- Listening is limited to the current desktop only (for security purposes).

→ GetAsyncKeyState is based on internal RIT structures (mainly gafAsyncKeyState) that
represent the current state of the keyboard.

→Another famous method is the use of Hook procedures.
- The hooks mechanism is part of the message system to filter specific messages from applications.
- Interception of messages is performed through a hook procedure.

- The hook procedure is notified for each event received.
- It can be used to log, modify or discard the event.

→There are different types of hooks.
- Each type of hook provides an access to a specific part of the message-handling mechanism.

→The scope of the hook defines the level where the hook applies.
- Depending on the hook type, the scope can be global or local.
- Global hook monitors messages for all threads in the same desktop.
- Local hook (or a thread-specific hook) monitors messages for a single thread only.

→ Registration of a Hook procedure is done with SetWindowsHookEx function.

Other means to access keyboard

Miscellaneous about accessing keyboard

→ In practice, there are libraries that manage the keyboard directly.

→To do this, two approaches are possible:
- A wrapper of the Windows API (an overlay) hiding the complexity with a nice interface.

- Qt, SDL, OpenCV, Tk, Gtk, script languages...
- Bypasses (or ignores) the Windows message system to manage the keyboard directly.

- DirectX or any home-made kernel level (with a user-mode interface) library.

→DirectX (mostly used by video games for performances reasons):
- This implies a loss of all the interactions and facilities offered by the RIT.
- It can be seen as a parallel channel to convey the keystrokes.
- The keyboard must be acquired to be read.

- It can be released thereafter.
- Other applications (using Windows API) can be deprived of keyboard keys.

- DirectX does not use the virtual key code but its own code.
- Based to the position of physical keys (video games ignores meanings of keys’ labels).

Threat situation - Keyloggers

Defense situation
-

Anti-Keylogger solutions

The key-loggers’ families

Hardware keyloggers – direct access

Hardware keyloggers – indirect access

→ Indirect access hardware keylogger devices:
- It aims to capture a signal: electromagnetic, sound or coming from another source.
- Then, it analyses a signal to deduce the keystrokes from the keyboard.

→ Some attacks are fully operational; others are more experimental...

→Wireless keylogger:
- Bluetooth interfaces use a range from 27 MHz up to 2.4 GHz radio frequency (RF)
- A transmission range limited to a radius of six feet (close to 2 meters).
- But it can be captured up to the distance of 100 meters by dedicated hardware.
- Wireless keyboard manufacturers encrypt RF transported keystroke characters.

- But the encryption, at least on Microsoft keyboards in 2008, can be very weak.

Hardware keyloggers – indirect access

→ Acoustic keylogger:
- Detection based on the sound of individual keystrokes thanks to special
parabolic microphones.
- Each keystroke have a particular sound which can be distinguishable.

- This is due to the plate underneath the keys that is not uniform on
regular keyboards.
- Particularly efficient on mechanical keyboards which are noisy

- Use of quieter keyboards may also reduce vulnerability.
- Required by US department of defence NACSEM 5103, 5104, and
5105 (classified).

→ Solutions against hardware keyloggers?
- It must be assumed if an attacker has a physical access to the victim’s
computer, the war is lost.
- “If someone can gain physical access to your computer, it is not your
computer anymore”.

Software keyloggers

→We propose to divide the taxonomy of software keyloggers into three categories:
- Firmware: Before the operating system is started, at motherboard or UEFI/BIOS level.
- Kernel-mode: With the highest level of privileges within the system, a driver for instance.
- User-mode: As a regular application in the system.

→ Firmware:

Software keyloggers

→ Kernel-mode:

- Usually, malicious drivers whose purpose is to record everything that comes from the keyboard.

- Different methods to interface content of keyboard in one of the different layer already presented.

- Some methods are obsolete (SSTD or ISR hooking) with last versions of Windows.

- Today’s methods aim to use drivers that follow general and recommended rules.

- Writing a driver can be a complex task (~ 2,000 lines of code to get something functional).

- Very technical, it requires a fine knowledge of the operating system but online examples.

- Note, since Windows XP 64-bit, all drivers must be signed to be executed.

- It strongly limits the possibilities for attackers.

→ User-mode:

- Uses the same API as any regular application.

- The difference is in the final aim of the data captured from the keyboard.

→ Handling IRP as a legacy filter driver for device.

- IOCLT handler routines are used to handle READ – WRITE – ADD device operations.

→ Ctrl2Caps driver developed by Mark Russinovich uses this technology.

- Swap two keys from the physical keyboard.
- The driver reads keystrokes and modify some of them on-the-fly.
- As an UpperFilters driver, it is automatically inserted into the keyboard drivers device stack.
- Of course this is not a malware, but it is a good technical base to write one.

→ Hijacking the KeyboardClassServiceCallback routine chain.
- IOCTL_INTERNAL_KEYBOARD_CONNECT request is sent for each keyboard device plugged in the

system.
- It provides a CONNECT_DATA structure updatable with a callback routine interfacing keyboard driver.

- The callback can read, modify or delete any keystroke received from the keyboard.
- Required to maintain the chain of callbacks (the “new” callback must call the “former” one).

→ KbFiler driver is a “tutorial” WDF driver provided by Microsoft.

- It presents almost all the ways to interact with the keyboard from kernel-land.
- Inserted in the keyboard driver device call stack as an UpperFilter driver in the registry.→ Handling IRP between keyboard HID and HID Class driver.

- Possible by tricky: we need to deal with HID reports directly.
- A lot of lines of code, high probability of parsing bugs (HID is self-defined).
- Few examples are close source.

→ Handling HID IRP a low level driver.

- Need to interface ALL HID devices (where the keyboard only matters).
- A lot more work about HID parsing with high requirements for performances.
- No example online except the kernel of Windows.

Anti-keylogger solutions

→ Practically speaking, there are two ways to fight keyloggers.

- “Antivirus like” detection of keyloggers (before or during execution) → Passive solutions.

- Mitigate of consequences done by keyloggers (during execution) → Active solutions.

→ The detection of keylogger threats (regardless of the method used) is a very complex problem.

- Keyloggers capture keystrokes just like any other legitimate program

- And it is very difficult to characterize the intent of a program.

- We prefer to neutralize them ;-) .

Anti-keylogger solutions

→ Active solutions aim to mitigate the possible malicious actions performed by a keylogger.

- In practice, this means jamming or ciphering the received data from the device.

- In academic literature, “decoying” is sometime used instead of “jamming”.

→ Jamming is performed by flooding the keyboard device stack with fake random keystrokes.

- There is a balance between jamming procedure and not impacting the user experience.

- Two approaches are possible: local and global.

- The local one targets certain processes to protect them from keyloggers.

- The global one affects the whole system.

Miscellaneous Anti-keylogger solutions

→Dynamic layout technique:
- The idea is to change the dynamically the keyboard layout while user is typing.

- Good to protect short texts to protect such as passwords.
- But not convenient for long password and generally limited to VKC (not scan-codes).
- In addition, the random layout is generally not performed low enough in the system to be efficient.

→Hypervisor based solutions:
- The use of a hypervisor provides precedence over hardware interactions.
- Hypervisor is used as a parallel communication channel (thus inaccessible to malware).
- But it is hard to interface with close source operating system:

- Where to "re-inject" keys?, Where they are used?, …
- “Escorting” keystrokes in memory are possible only for kernel-mode … but not user-mode.

- Hard to guess where the keystroke content is managed in each application.
- There is an induced delay in the processing time of the keys, but imperceptible for the user.
- Windows 10 uses hypervisor with virtualization-based security to enhance system of the security.

- We cannot add another hypervisor beside the first one.

Industrial Anti-keylogger solutions

→ Many solutions use a ciphered parallel communication channel to the one of Windows (ie: RIT).

- This parallel channel approach is based on security through obscurity.

- If the channel is discovered or reversed, serious flaws could appear.

→ We show that if there is a parallel communication channel, ciphering is superfluous.

- Indeed, accessing such channel requires to be administrator.

- Whether the communication is with a dedicated application or directly with the protected application.

- With such rights, it is easy to retrieve any cipher key in memory (injection, debuggers, etc.).

→ Malware threat running with administrator privilege is powerful enough to uninstall any security software.

- That way, this system only protects the administrator processes.

- And the Raw Input Thread already provides such protections with different sessions/desktops…

Solutions?

→ First, to specify that there is no perfect solution ... but we can do much better.

1) Malware detection is too limited when dealing with keylogger threat.

→ Keyloggers are just regular software using regular API for bad purposes…

→The problem is much more on philosophy side than on technical one…

→Try to limit potential impact/theft coming from this problem.

→ Secures the keystrokes data flow, like a bodyguard.

Solutions?

2) Design software to take care of secure input means from the beginning.

→ “By design” to ensure that specific part in the software must be secure.
- Problem is not languages or frameworks, but what we do with data.

→Do not inject Dll inside an existing software:
- Nobody expect you …
- Most of targeted software are not ready for that …
- In some cases, it may crash the application → instability.

→A better API (why not handled by Hyper-V) could be a good move…

Solutions?

3) Protect protected application from being hacked in memory.

→ “Administrator” is not a protection against Read/WriteProcessMemory.

→And not all applications should run with such privileges…

→Different ways to prevent Dll injections, but that’s another story ;-).

- Protected process (light) is one .

→ Avoid “debugger” stuff from access/modifying other’s memory.

Solutions?

4) Secure you protection system.

→ It is sometime easier to deactivate/control/hijack the protection than
the target…

→ But there is a balance between protection and user’s rights to
uninstall/resume a software.

- It’s user’s own machine, after all .

Solutions?

5) Work for your users first.

→ Is our new so-called golden feature worth ruining the user experience?

→Do not use undocumented API, it is source of instability.

→ Knows how work the system, the threat and what you can do…

- Bring visibility into data flows and not just loss prevention and
system reliability.

Thank you for your
attention

Do you have any question?

